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Abstract

The electron temperature gradient mode has been proposed to be a source of exper-
imentally relevant electron thermal transport, via a variety of nonlinear phenomena
such as the generation of streamers. The question of streamer stability and satura-
tion is revisited, with the effects of geometry and perturbation stability highlighted.
It is shown that the streamer saturation level is not determined by the balance
of Kelvin-Helmholtz rate vs. linear growth rate, but by balancing the nonlinear
Kelvin-Helmholtz drive against damping mechanisms of the Kelvin-Helmholtz per-
turbation. In addition, random shear suppression of ETG turbulence by drift-ion
temperature gradient (DITG) modes is studied, and it is found that streamers will
be sensitive to shearing by short-wavelength DITG modes. An additonal interaction
mechanism, modulations of the electron temperature gradient induced by the DITG
turbulence, is considered and shown to be quite significant. These considerations are
used to motivate a discussion of the requirements for a credible theory of streamer
transport.
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1 Introduction

One of the central, outstanding questions in magnetic confinement based fu-
sion energy research is understanding the source of anomalous electron trans-
port [1], particularly in the case of internal transport barriers in which particle
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and ion thermal transport have been suppressed [2–4]. Recently, the electron
temperature gradient (ETG) mode [5–8] has become a popular explanation for
anomalous electron thermal transport, for several reasons. First, it has a very

small characteristic scale ρe (ρe = vTe/Ωce, vTe =
√

Te/me, Ωce = |e|B/mec)

and fast time scale
√
LTeLB/vTe (for curvature-driven ETG, which is expected

to be the most important from a transport standpoint), which indicate it
should be insensitive to the large-scale equilibrium shear flows which are be-
lieved to lead to the suppression of particle and ion thermal transport (via
suppression of the ion temperature gradient (ITG) [9] and trapped electron
(TEM) [10–14] modes, which have larger characteristic spatial scales ρi and
slower timescales

√
LT iLB/vT i). Secondly, the ETG mode is presumed to ex-

ist in the region where k⊥ρi >> 1, which leads to an essentially adiabatic ion
density response, implying that it will drive negligible particle or ion thermal
transport. Finally, a number of machines have reported evidence for a “critical
gradient” for electron transport [15–18], which is expected from the form of
the linear growth rate for the ETG mode. The major difficulty in invoking
ETG turbulence is that its characteristic spatial and temporal scales give a
mixing length thermal diffusivity χETGe ∼ ρ2

evTe/LTe which is much to small
to explain the observed transport. However, certain recent simulations have
suggested that ETG turbulence can exhibit streamer formation [19–22] i.e. the
formation of large scale, radially extended structures which might greatly in-
crease the radial correlation length, and thereby increase the transport above
the basic mixing length estimate. In addition, there are also arguments that
inverse cascade dynamics in the magnetic fluctuations of the could make the
correlation length of the turbulence on the order of the electron skin depth
δ = c/ωpe >> ρe [1,23], again raising the effective diffusivity to experimentally
relevant levels. Indeed, the enthusiasm for the ETG mode has reached such a
level that it is sometimes invoked to explain not just electron thermal trans-
port in cases where ITG and TEM modes are believed suppressed, but in the
bulk of the plasma (e.g. in regions without internal transport barriers, and “L-
mode” plasmas) [16,17], effectively overwhelming the electron thermal trans-
port due to ITG and TEM modes. Given the importance of electron transport
in understanding current machine performance, and predicting future perfor-
mance, it is clearly important to have a thorough analytical understanding
of the mechanisms which drive the transport. In particular, understanding
streamer dynamics represents an important and intriguing topic for the fu-
sion theory community, because of their potential impact and implications for
electron thermal transport, and their inherent basic science motivation in the
context of pattern formation in a nonlinear system.

Another challenge frequently encountered in problems of self-organization and
structure / pattern formation is concerned with quantitatively understanding
the interaction between bands of turbulence with disparate scales. These types
of problems are central to the process of zonal flow formation in planetary at-
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mospheres and confined plasmas, and dynamo generation of magnetic fields,
but have not been deeply explored in the context of transport predictions. In
most theories and models of turbulent transport, there is assumed to be one
dominant type of instability (such as ion temperature gradient-driven drift-
waves (DITG) or resistive interchange modes [24]) which is taken as the sole
driver of all of the transport channels. In reality, however, multiple instabil-
ities on different scales may coexist (i.e. DITG on ρs = cs/Ωci scales, and
ETG modes on ρe scales). Previously, it has been argued (or more often, tac-
itly assumed) that the separation in temporal and spatial scales meant that
interactions between instabilities on different scales were generally negligible
relative to the nonlinear “self” interactions of a particular instability. For in-
stance, the effects of ETG turbulence on DITG turbulence and vice versa (such
as the shearing of ETG eddies by the DITG flow field, or the Reynolds stress
of the ETG turbulence on the DITG turbulence) were ignored. In particular,
with the possible highly specialized exception of electron thermal transport in
barrier regiemes where drift-ITG turbulence has been supressed, ETG fluctu-
ations must always be considered in the context of the drift-ITG background.
This questions becomes particularly relevant for the case of streamer driven
transport (or electron skin-depth scale eddies), where the transport-relevant
scales are much greater than ρe, thus reducing the effective separation be-
tween the ETG-driven transport and DITG scales, and thereby increasing the
likelihood of significant shearing interactions between the transport-driving
structures and the DITG turbulence. More generally, the problem of how dif-
ferent different scales of turbulence interact is also of intrinsic interest as a
novel problem in nonlinear dynamics. The generic structure of this problem
has been considered by Itoh et al. [25,26].

The remainder of the paper is structured as follows: In Sec. 2, we discuss the
stability of streamers to nonlinear Kelvin-Helmholtz breakup in the context of
the Hasegawa-Mima system [27], and mechanisms for their saturation. In Sec.
3, interactions between ETG and DITG modes are considered, due to both
the shearing of ETG turbulence by the DITG flow, and by DITG-induced
modulations of the electron temperature profile. Motivated by these consider-
ations, we present some nessecary critera for developing a credible theory of
physicaly relevant streamer-driven transport in Sec. 4. Conclusions and future
directions are presented in Sec. 5.

2 Streamer physics

In both ETG and ITG turbulence simulations, radially extended convective
cells termed streamers have been observed, with correlated increases in the
turbulent heat flux. Such structures are particularly important for ETG tur-
bulence, as they potentially offer a mechanism for raising the turbulent trans-
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port to experimentally relevant values. To understand the impact of streamers
on transport, several questions must be answered, such as:

(1) For what parameters do streamers exist? (Generation and stability)
(2) What determines the intensity of the streamers? (Saturation mechanism)
(3) What determines the poloidal and radial scales of the streamers?

In this section, we offer some insights into these questions, via considerations
from a simple analytic model.

2.1 Streamer Classification

The first step in any theory of streamers is to mathematically define what a
streamer is. This issue is non-trivial, as streamers remain somewhat ambigu-
ous concept in the fusion community. Towards this end, one might note that
various “observations” of streamers could be put into two different groups:
the streamer as an isolated burst (in a background of smaller-scale, (quasi-)
isotropic turbulence), such as shown in Refs. [19] and [28], and the streamer
array (an array of poloidally “stacked,” radially extended convective cells),
such as that shown in Refs. [20,22,29,30]. The isolated burst streamer is of-
ten observed intermittently, whereas the steamer array is generally a fairly
static structure. Also note that while the isolated burst case is clearly related
to highly nonlinear dynamics of the turbulence, the second case could arrive
from linear or nonlinear processes.

Analytic treatment of the “isolated burst” streamer is in general quite difficult,
because of the difficulty in mathematically defining the streamer structure, and
because of its intermittent nature. Such structures naturally motivate proba-
bilistic approaches i.e. determining the probability of a structure of a certain
size to be formed, and its impact on the probability distribution function
(PDF) of various fluxes. Initial progress towards using this approach has been
reported by Kim and Diamond [31], who used a path-integral approach to
calculate the tails of the momentum flux PDF in the Hasegawa-Mima frame-
work. In a related vein, Nevins has reported on the use of “heat pulse anal-
ysis” in determining the scaling of heat flux with system size [32,33]. In this
analysis, the (flux-surface averaged) heat flux is decomposed into events of
different scales, and the PDF of events as a function of scale is investigated.
Approaches such as these are clearly quite promising in aiding understanding
of the highly nonlinear dynamics of the turbulence, and should receive more
attention. In contrast to the “isolated burst” case, the streamer array is more
readily tractable to direct analytic analysis, and it is this case upon which we
focus for the remainder of this paper.
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2.2 Stability of Streamer Array in the Hasegawa-Mima System

One of the first questions one might ask about a streamer array is whether such
a system is stable. Indeed, basic intuition from fluid dynamics suggests that
such a structure could be unstable to a Kelvin-Helmholtz (K-H) type breakup
[34]. In magnetized plasmas, the basic aspects of stability can be found by
considering the stability of the structure in the context of the Hasegawa-Mima
system [27], which is the prototypical equation for drift-wave turbulence. The
Hasegawa-Mima equation has the form:

(

1 −∇2
⊥

) ∂φ

∂t
+
∂φ

∂y
= {φ,∇2

⊥φ} (1)

Here, the normalizations are x, y → x, y/ρ, ρ = V/Ωc, Ωc = |q|B/mc, V =
√

Te/m, t → V t/Ln, Ln = −d lnno/dx, and φ to the mixing length level φ =

(Ln/ρs) |e|φ̃/Te. The Poisson brackets {φ,∇2
⊥φ} = ∂xφ∂y (∇2

⊥φ)−∂yφ∂x (∇2
⊥φ)

represent the convection of vorticity ∇2
⊥φ by the ~E × ~B velocity ~vExB =

(c/B2) ~E × ~B = −~∇φ× ẑ.

We assume there exists a initial streamer array φs of the form

φs =φqe
i(qy−Ωqt) + c.c. (2)

Ωq =
q

1 + q2
(3)

Note that the streamer has a real frequency Ωq, which is neglected in earlier
treatments of the instability [19,21]. Noting that the streamer is periodic in
ψq = qy − Ωqt, Floquet theory is used to write the perturbation in the form

δφ =
∞
∑

n=−∞

φne
ipx+inψq + c.c. (4)

For tractability, we restrict the range of n from -1 to 1, which is equivalent to
considering the stability of the streamer in the context of a four-wave coupling
problem (i.e. a K-H perturbation φ0 and two sidebands φ±1); it can be shown
that the requirements on matching wavenumbers and frequencies makes the
three-wave case inefficient. One can then directly derive the evolution equa-
tions for the perturbation modes

∂φ0

∂t
=− qp3

1 + p2

(

φqφ−1 − φ∗
qφ1

)

(5)

5



∂φ1

∂t
− i∆Ωφ1 =

qp (q2 − p2)

1 + q2 + p2
φqφ0 (6)

∂φ−1

∂t
+ i∆Ωφ−1 =−qp (q2 − p2)

1 + q2 + p2
φ∗
qφ0 (7)

∆Ω = Ωq −
q

1 + q2 + p2
=

qp2

(1 + q2) (1 + q2 + p2)
(8)

The growth rate is found to be

γ2
KH = 2

q2p4 (q2 − p2)

(1 + q2) (1 + q2 + p2)
|φq|2 − ∆Ω2 (9)

In the limit of q, p << 1, which is relevant for streamers which might have a
meaningful impact on transport, one finds

γ2
KH ' 2q2p4

(

q2 − p2
)

|φq|2 −
(

qp2
)2

(10)

The first term in Eqn. 10 is what one might call the “usual” K-H growth rate,
which indicates that the perturbation wavenumber p must be smaller than
the streamer wavenumber q for instability, reflecting the “inverse cascade”
property of the nonlinearity (i.e. the streamer transfers energy to larger scale
modes), in agreement with previous studies. The second term, which has not
been previously reported, represents the stabilizing influence of the frequency
mismatch between the base frequencies of the streamer and the sidebands.
The effect of this term is to indicate that there is a minimum intensity for

streamer breakup. It is easy to see that this condition is given by

φq >
1

√

2 (q2 − p2)
(11)

Equivalently, one might also say that for a given streamer intensity, the per-
turbation wavelength p must be less than a critical wavenumber kc,

kc = q

√

√

√

√1 − φ2
c

φ2
q

(12)

φc =
1√
2q

(13)

One can also maximize Eqn. 10 over the K-H wavelength p, to find

pmax =

√

2

3
kc (14)

6



→ γmaxKH = γ0
φq
φc

(

1 − φ2
c

φ2
q

)3/2

(15)

γ0 =
(

2

3

)3/2

φc =
2

3
√

3
q3 (16)

This result (Eqn. 15) is plotted in Fig. 1.

2.3 Effects of Linear Growth and Damping Rates

While one can gain some basic insights into streamer stability through the
approach taken in the previous section, one would like to undertake a more
rigorous analysis of the problem. In particular, self-consistently including the
fact that the full ETG system is described by coupled electrostatic potential,
pressure, and magnetic fluctuation fields, with linear growth and damping
rates, would be desirable. While such an approach is technically possible,
interpretation of the results rapidly becomes quite difficult; work along these
lines will be reported upon in a future publication.

A more tractable problem is to add a set of ad-hoc damping rates to the one-
field set of equations derived above. Defining the damping rate of the K-H
perturbation as νKH (note that the K-H mode is a purely radial mode which
cannot extract energy from the background profile, and so must be damped),
and the damping rate of the sidebands as γSB, one can write an updated set
of equations for the perturbation evolution as

∂φ0

∂t
=−νKHφ0 − qp3

(

φqφ−1 − φ∗
qφ1

)

(17)

∂φ1

∂t
=− (γSB − i∆Ω)φ1 + qp

(

q2 − p2
)

φqφ0 (18)

∂φ−1

∂t
=− (γSB + i∆Ω) φ−1 − qp

(

q2 − p2
)

φ∗
qφ0 (19)

∆Ω = qp2

Here, we have again assumed q, p << 1 for simplicity. The dispersion relation
with the inclusion of the damping rates can be derived as

(γ + νKH)
(

(γ + γSB)2 + ∆Ω2
)

= γ2
KH (γ + γSB) (20)

γ2
KH = 2q2p4

(

q2 − p2
)

|φq|2 (21)

In the limit that |∆Ω/ (γ + γsb) | << 1, which should be true for the assump-
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tion that q, p << 1, the net growth rate can then be solved as

γ ' −γSB + νKH
2

+

√

γ2
KH − ∆Ω2 +

1

4
(νKH − γSB)2 (22)

The condition on streamer intensity for instability is now

γ2
KH >∆Ω2 + γSBνKH (23)

→ |φq|2>
1

2 (q2 − p2)

(

1 +
γSBνKH
q2p4

)

(24)

As before, there is a minimum intensity for break-up which depends upon
∆Ω, γSB, νKH . It should be noted that the above set of equations, and result-
ing physics, is quite similar to the model proposed by Chen et. al. [35] for
describing zonal flow generation via the coherent modulational instability of
a linearly unstable drift-wave in toroidal geometry. Here, the pump drift-wave
of Chen et. al. becomes the streamer, and the zonal flow becomes the K-H
perturbation. The key difference is that we have considered the problem in
the much simpler Hasegawa-Mima system which omits geometry effects and
parallel dynamics, which are well-known to be very important for correctly
describing zonal flow dynamics in ITG turbulence (via mechanisms such as
magnetic shear stabilization [36,37]). Including the parallel dynamics has sig-
nificant implications for the overall dynamics here as well. Their significance
arises here from the fact that K-H modes with finite k|| (essentially acoustic
modes) will be strongly damped due to Landau damping, while k|| = 0 modes
(ETG zonal flows) have a much weaker damping rate proportional to a combi-
nation of νei and νee (analogous to the collisional damping of ITG zonal flows)
[38]. It should also be remembered that the ion response in ETG is essentially
adiabatic for all k||, which has the effect of strongly reducing ETG zonal flow
growth, relative to the ITG case. In addition, inclusion of the geometry and
parallel dynamics will also strongly impact the stability of the sidebands (i.e.
γSB), which is clearly another important factor in determining the minimum
streamer amplitude for break-up.

2.4 Streamer Saturation

Complementary to the question of streamer stability and breakup is the ques-
tion of streamer saturation level, which is crucial to determining the transport
resulting from the streamers. Previous attempts have done this by taking the
simplistic approach of balancing the linear growth rate against the breakup
rate, estimated as the growth rate of K-H mode [19,21]. For q ' p << 1,
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and assuming φq/φc >> 1, γKH ∝ q4|φq|, which gives that |φq| ∼ γlinq /q4. For
toroidal ETG modes, γlinq ∝ q, giving |φq| ∼ 1/q3, which is quite large for
q << 1. It is then argued that this high saturation level (perhaps combined
with the large radial scale of the streamers) leads to experimentally relevant
transport levels. However, one need only dig a little deeper to find a significant
flaw in this argument: if one notes that the turbulent transport should scale
as the intensity of the streamer, i.e. χturb ∝ |φq|2 ∼ 1/q6, one finds that for
realistic values of q ( ∼ 0.1ρ−1

e , based on the previously reported results [19]),
one finds a transport level that is in fact unphysically large (e.g. on the order
of 106χgyroBohm for the example above).

The resolution to this inconsistency is to note that one should balance the
pure K-H drive against the growth and damping rates of the K-H mode and
sidebands, rather than the the linear growth rate of the streamer. Eqn. 23
clearly demonstrates this, as marginal stability to K-H perturbation is equiva-
lent to streamer saturation. More directly, one could write a heuristic evolution
equation for the K-H mode as

∂φKH
∂t

= γKH (q, φq)φKH − νφKH (25)

where γKH was calculated above in Eqn. 10, and ν is the rate energy leaves
the K-H mode, due to other nonlinear interactions (e.g. a turbulent viscosity),
and linear damping effects. Clearly, steady-state / saturation is reached when
γKH = ν. One can draw an analogy with the 0-D predator-prey models pro-
posed by Diamond et. al. [39] for drift-wave - zonal-flow interactions, where
Eqn. 25 would be combined with a streamer evolution equation of the form

∂φq
∂t

= γlinq φq − γNL (p, φKH)φq (26)

Here, γNL is the rate energy leaves the streamer mode, which is in general

not equal to γKH! Here, the appropriate analogy is to momentum transfer
rates between electrons and ions. Namely, note that νei 6= νie, i.e. the rate

of momentum transfer to electrons from ions is not the same as the rate of
transfer to ions from electrons, but the overall momentum of the system is
conserved. Likewise here, the rates of energy transfer are different, but the
energy of the system as a whole is (nonlinearly) conserved. In this context,
one can calculate the effect of the back-reactions on the streamer, to derive
a set of normalized equations which describe the nonlinear evolution of the
instability.

∂A0

∂τ
=−ΓKHA0 + A∗

qA+ −AqA− (27)
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∂A+

∂τ
=− (ΓSB − iβ)A+ + αAqA0 (28)

∂A−

∂τ
=− (ΓSB + iβ)A− − αA∗

qA0 (29)

∂Aq
∂τ

=Aq + A0A
∗
− − A∗

0A+ (30)

The normalizations used are τ = γqt, where γq is the linear growth rate of
the streamer, α = (q2/p2 − 1), ΓKH = νKH/γq, ΓSB = γSB/γq, β = ∆Ω/γq =
qp2/γq, K-H amplitude A0 = qβφ0, sideband amplitudes A± = qβφ±1, and
streamer amplitude Aq = pβφq. As stated above, this model is quite similar to
the one developed by Chen et. al., and might be expected to exhibit similar
nonlinear behavior such as a period doubling route to chaos. Such dynamics
have interesting implications for intermittency of streamer transport, even for
the case of the regular streamer array. Of particular interest is to consider the
above model in the limit that β << ΓSB, in which case only the real parts of
the equations need be considered. Defining As = A+ − A−, one has

∂A0

∂τ
=−ΓKHA0 + AqAs (31)

∂As
∂τ

=−ΓSBAs + 2αAqA0 (32)

∂Aq
∂τ

=Aq − A0As (33)

It is then easy to show that this set of equations has a (non-trivial) fixed

point at A0 =
√

ΓSB/2α, As =
√

ΓKH, and Aq =
√

ΓSBΓKH/2α, clearly
demonstrating that the streamer saturation level is set by the damping rates
of the perturbation. It should also be noted that the existence of the fixed
point requires that the sidebands be damped as well as the K-H mode, again
highlighting the importance of geometry, parallel dynamics, and other physics
not explicitly included in the model used here.

The obvious implication of the above discussion is that the damping rates of
the instability (both the primary and sidebands) will be crucial for determin-
ing the streamer saturation level and thus streamer-driven transport, just as
the damping of zonal flows in ITG turbulence is crucial for determining the
transport in that system. One might also speculate that the importance of
K-H mode damping might explain differences in simulation results. For exam-
ple, Jenko and co-workers [19,20] and Idomura et al. [30] report the existence
of strong streamer formation and high transport levels in various gyrokinetic
flux-tube and global simulations (respectively), while Labit and Ottaviani re-
port the presence of elongated structures, but no or minimal enhancement of
transport [22] in gyrofluid flux-tube simulations with a simplified magnetic
geometry, and Lin et al. report similar “null” results in a global gyrokinetic
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simulation [29]. In all cases where streamers were reported to drive signif-
icant transport, there was positivie magnetic shear and toroidal curvature
effects were strong; conversely, all cases which have considered “slab” geome-
tries with weak curvature effects, or reversed magnetic shear, have exhibited
low thermal transport and the formation of ρe scale zonal flows; both sets
of results highlight the importance of magnetic geometry (and motivate re-
consideration of streamer saturation in a more realistic model). We note that
in the reverse shear case, the connection between zonal flow stability and low
thermal transport has been investigated by Idomura et al. [37]. Clearly, this
is an issue which requires further study.

3 Interactions between ETG and DITG turbulence

One idea which has recently arisen from studies of ETG turbulence is whether
such turbulence would have any effect on the larger scale ITG turbulence
it would coexist with [40]. However, with the rise in popularity of the ETG
mode as a dominant source of electron heat transport, even in the presence
of ITG and TEM turbulence (which we “lump” together as DITG modes,
since both have the ion gyroradius as their characteristic scale), it is perhaps
more useful to consider the “inverse” question, e.g. how does the presence
of DITG modes affect the dynamics of ETG turbulence, particularly large-
scale structures such as streamers. Like the question of streamer dynamics,
the question of interactions between different scales of turbulence also has an
inherent interest as a novel problem of nonlinear dynamics. In this section,
we first consider how shearing due to the DITG flow field will affect the ETG
turbulence. We then consider the effects of DITG-induced fluctuations of the
temperature gradient on the ETG turbulence.

3.1 Shearing of ETG turbulence by DITG modes

We first consider the question of how random shearing by DITG modes might
affect ETG turbulence. As described above, the drift-ion temperature gradient
(DITG) label applies to both long-wavelength curvature-driven ion tempera-
ture gradient instabilities (which have characteristic radial scales of approxi-
mately several ρs), as well as instabilities with slightly shorter characteristic
scales, such as the “universal instability”[41] or the collisionless trapped elec-
tron mode [11–14]. We exploit the separation of space and timescales between
the DITG and ETG modes to describe the evolution of the ETG turbulence
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in the presence of the DITG modes by the wave-kinetic equation (WKE) [42]

∂N

∂t
+

∂

∂~k

(

ωk + ~k · ~VDITG
)

· ∂N
∂~x

− ∂

∂~x

(

~k · ~VDITG
)

· ∂N
∂~k

= 2γkN − ∆ωN2(34)

Here, N = (τ + k2
⊥ρ

2
e)

2
∣

∣

∣φETGk

∣

∣

∣

2
+
∣

∣

∣TETGk

∣

∣

∣

2
is the potential enstrophy (τ = Te/Ti

and T = T̃e/Te0) , which is the adiabatic invariant [43] associated with the
ETG turbulence, while ωk and γk are the linear frequency and growth rate
of the ETG modes, respectively, and the ∆ωN2 term represents an simplified
model for nonlinear self-damping of the ETG turbulence (i.e. turbulent mixing

or decorrelation). ~VDITG = vTeẑ × ρe~∇φDITG is the flow field of the DITG
turbulence (that is, on ρs scales and thus large compared to the ρe scale ETG

turbulence); ẑ = ~B/|B| is the unit vector in the direction of the local magnetic
field. For both the ETG and DITG modes, φ = |e|φ̃/Te. It is important to

note that here ~VDITG represents the flow field of the entire DITG turbulence
spectrum, not just the flow field associated with the zonal flows driven by
that turbulence (as in previous studies which have used the adiabatic theory
approach). In particular, we include the fluctuations associated with trapped
electron modes and other effects which may be on slightly smaller scales than
the fluctuations associated with traditional curvature – driven ITG turbulence
(i.e. turbulence with length scales l ' ρs as well as on scales l ≥ ρs).

The most direct way to estimate the effects of the DITG turbulence is to use
a quasi-linear closure of the WKE to derive the k-space diffusion coefficient
for ETG modes due to a spectrum of DITG modes |φq|2; this calculation is
analogous to that of Diamond et. al. [39] in determining the effects of zonal flow
shearing on the turbulence which generates the flow. We also note that if there
are spatial gradients of the ETG turbulence intensity, the DITG turbulence
will induce spatial diffusion. Using this approach, we find

∂〈N〉
∂t

' ∂

∂kα
DK
αβ

∂〈N〉
∂kβ

+ 2γk〈N〉 − ∆ω〈N〉2 (35)

DK
αβ = ρ2

ev
2
Te

∑

q

qαqβ |
(

~k × ~q
)

· ẑ|2R (Ωq) |φq|2 (36)

R (Ωq) =
1

2γk − i (Ωq − ~q · ~vg)
' 1

2γk
(37)

Here DK
αβ is a tensor wavenumber-space diffusivity coefficient which represents

the generalized random shearing action of the DITG spectrum on the small-
scale ETG turbulence spectrum. The angular brackets denote a spatial aver-
aging; thus 〈N〉 is the ETG intensity averaged over DITG (ρs) spatial scales.
This diffusion tensor represent a direct generalization of previous works (such
as Refs. [39,44]) which have used a similar approach to quantify the effects of
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zonal flow shearing on the underlying turbulence. The tensor structure follows
from the fact that the DITG turbulence is a function of both the radius r and
polodial angle θ, whereas in the previous approaches the diffusion arose only
from the zonal flow spectrum, which is independent of θ. This tensor structure
has also been discussed in a different context by Hahm and Burrell [45]. The
R (Ωq) term (Eqn. 37) represents the response function of the ETG turbulence
to mode q of the DITG turbulence; Ωq is the real frequency of the DITG mode,
while ~vg is the group velocity of the ETG turbulence. The separation of DITG
and ETG scales leads to R (Ωq) being dominated by the ETG growth rate γk.

To estimate the importance of the k-space DITG shearing, one can iden-
tify two key timescales: the linear growth rate γlin = 2γk, and the diffusive
timescale γD ∼ DK

αβ/kαkβ. One can characterize the strength of the DITG-
induced shearing of ETG turbulence by arguing that if γlin << γD then the
k-space diffusion rapidly carries energy to high k where it damps, which ef-
fectively means the ETG is strongly suppressed. More colorfully, the DITG
shearing field will “rip” the ETG turbulence apart before it can grow to a
significant intensity level. In the other limit, the random shearing cannot over-
come the linear drive of the ETG, which must then saturate by self-damping.
If γD ∼ γlin, then one would have a situation in which the DITG shearing
was strong enough to significantly lower the saturation level of the ETG tur-
bulence, but would not necessarily completely “quench” it. This regime is
particularly relevant for streamers, as in such a case the shearing could reduce
the radial correlation length (which serves as a sort of radial step size for the
turbulent thermal diffusivity) of the streamers enough to prevent them from
driving significant levels of transport, even if they were not entirely suppressed
(i.e. a “weak” streamer case).

Having identified the relevant timescales, one can make a more quantitative
estimate for the importance of the DITG shearing. However, such a calculation
requires a specific model for the DITG spectrum. One way of estimating this
is to note that as the DITG turbulence is driven by the temperature gradient,
an upper bound for the DITG saturation level is roughly at a mixing length
level given by

Tq =
T̃i
Ti0

=
1

qLT i
(38)

where LT i = −d lnTi0/dx (LT i rather than Ln is used because the mode is
driven unstable by the ion temperature gradient). One can then use quasi-
linearly relate the potential fluctuations to the temperature fluctuations via a
simple model for curvature-driven DITG turbulence which gives

|φq|2 '
1

q2LBLT i
(39)
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. With this model of the DITG spectrum, one can at last estimate the ratio
of γlin/γD via:

γD ∼ ρ2
ev

2
Te

γlin

∑

q

q4|φq|2 ∼
ρ2
ev

2
Te

γlin

q̄2

LBLT i
(40)

so that

γlin
γD

=

(√
LBLT iγlin
vTe

)2
1

(q̄ρe)
2 ' M

m

(

kθρe
q̄ρs

)2
ηe − ηce
τηi

(41)

, where ηi = Ln/LT i. In the above estimates, the characteristic wavenumber of
the DITG turbulence is given by q̄ and the fact that for curvature-driven ETG

modes, the linear growth rate can be written as γk '
(

vTe/
√
LnLB

)

kθρe
√

(ηe − ηce) /τ

has been used; τ = Te0/Ti0.

As described in the introduction, there are two particularly significant cases
of structure formation in ETG turbulence, as they are believed to be the most
likely sources of experimentally relevant levels of electron thermal transport.
These are:

(1) large-scale streamers, which are observed in simulations to have kθρe '
0.1

(2) electromagnetic effects, which may drive an inverse cascade of energy,
causing energy to accumulate at collisionless electron skin depth δe =
c/ωpe scales, such that kθρe ' ρe/δe =

√
βe

In either case, the shearing from DITG modes with q̄ρs < 1 will still be weak;
for instance, it is generally found that in simulations of curvature-driven ITG
turbulence that the spectrum peaks near q̄ρs ' 0.1. However, consideration of
shorter wavelength modes (such as CTEM modes), which can produce fluctu-
ations with q̄ρs ' 1 would then suggest a shearing ratio for streamers

γD
γlin

'
(

qρs
kθρe

)2
m

M

τηi
ηe − ηce

' 100 (qρs)
2 m

M

τηi
ηe − ηce

(42)

or (assuming βe ∼ 10−2)

γD
γlin

' (qρs)
2

βe

m

M

τηi
ηe − ηce

' 100 (qρs)
2 m

M

τηi
ηe − ηce

(43)

for δe-scale ETG fluctuations. In either case, it is clear that the shearing ratio
could approach unity for some parameters (such as a weak deviation from
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marginality for the ETG modes), particularly when one notes that one may
have strong CTEM fluctuations even for qρs ≥ 1.

Thus, it seems that in general while the shearing of ρe scale ETG by DITG is
fairly weak (i.e. γD << γlin), the shearing due to short-wavelength DITG
modes could have a significant impact on larger ETG structures, such as
streamers on scales greater than ρe. This result confirms the basic intuition
that for suppression by a shear flow to be effective, the scale of the turbulence
or structure must be close to the scale of the shear flow[46]. It should be noted
that while these DITG fluctuations are not generally considered the primary
sources of turbulent transport (and thus often neglected), they constitute the
relevant shearing field for the ETG turbulence and structures. This result
is particularly important for ETG streamers as it could significantly impact
their saturation level and spatial structure, and thus the overall relevance
of ETG turbulence as a source of experimentally relevant electron thermal
transport. Thus, ETG modes should be studied in the presence of a CTEM
(or other short-wavelength component of DITG turbulence) background. In
this regard, it is important to note that the shearing effect depends explic-
itly on mass ratio, therefore any simulations which use artificially high values
of m/M to study these interactions must take extra care in quantifying the
observed scalings with the mass ratio range explored. In addition, this effect
introduces a new way for geometry to affect electron transport, as the shearing
can arise from physics such as trapped particles, the population of which has
a strong radial dependence.

3.2 DITG profile modulation effects on ETG turbulence

In addition to direct interactions between the velocity fields associated with
coexisting ETG and DITG turbulence, there is at least one more cross-field in-
teraction of interest: the convection of electron temperature fluctuations by the
DITG turbulence. The impact of this interaction will have a somewhat differ-
ent character than those of the previous discussions, as the ρs scale convection
of Te by DITG modulations will appear as modulations of LTe, or equivalently,
ηe = Ln/LTe, to ETG modes. Such modulations of ηe represent an effective
modulation of the ETG growth rate, which scales as γETG ∝ √

ηe − ηce, where
ηce represents a critical value of ηe needed for instability. The effective modu-
lation of equilibrium parameters for small-scale fluctuations due to convection
by a larger-scale turbulent spectrum has been previously investigated by Itoh
and Itoh and co-workers using a general model of renormalized multi-scale
turbulence [25,26]; here, we focus specifically on the effects of DITG-induced
∇Te modulations on ETG turbulence via a different approach then was used
in Ref. [25] and [26]. Specifically, we again exploit the fact that the DITG time
scale is much slower than the ETG time scale, and treat the problem in the
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context of a wave-kinetic description of the ETG turbulence. One can write
ηe = η0

e + δηe, where δη is the effective modulation due to the DITG turbu-
lence, and we assume δηe/η

0
e << 1. Linearization of the wave-kinetic equation

(Eqn. 34) provides:

R−1 (Ωq) δNq = 2
∂γk
∂ηe

|ηe=η0
e
δηq〈N〉 (44)

where R (Ωq) is defined in Eqn. 37, and we have expressed δηe as
δηe =

∑

q δηq exp (i (~q · ~x− Ωqt)).

We can then use quasi-linear theory to write the evolution equation for 〈N〉
as

∂〈N〉
∂t

= 2 (γk + γNL) 〈N〉 +O
(

〈N〉2
)

(45)

γNL = 2

(

∂γk
∂ηe

|ηe=η0e

)2
∑

q

R (Ωq) |δηq|2 (46)

Since γk ∼ (ηe − ηce)
1/2, and one can estimate R (Ωq) ∼ 1/2γk, the ratio of γNL

to γk can be estimated as

∂γk
∂ηe

|ηe=η0
e
=

γk
2 (η0

e − ηce)
(47)

→ γNL'
γk

4 (η0
e − ηce)

2

∑

q

|δηq|2 (48)

⇒ γNL
γk

=

∑

q |δηq|2
4 (η0

e − ηce)
2 =

1

4

(

|δηe|
η0
e − ηce

)2

(49)

Thus, when the magnitude of the DITG modulations of ηe is comparable to the
deviation of η0

e from the critical value ηce (i.e. the deviation from marginality),

the gradient modulation effect will be important. Note that |δηe| =
√

∑

q |δηq|2
is the RMS amplitude of the gradient modulations, and inherently positive (re-
flecting the statisical averaging used in deriving Eqn. 49). One can estimate
the magnitude of the fluctuations through a mean-field theory of DITG turbu-
lence; it should also be straightforward to calculate the modulation amplitude
using existing numerical simulations. Writing |δη| = αη0

e (where α ≤ 1), Eqn.
49 shows that the effect of even these small pertubations could be quite sig-
nificant as:

γNL
γk

∝
(

α
η0
e

η0
e − ηce

)2

(50)
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It is important to note that the preceding analysis implicitly assumes that the
net deviation from marginality η0

e+δηe−ηce is always greater than zero; that is,
that the modulations of ηe are never strong enough to stabilize the ETG modes
(which occurs when the net deviation is negative). However, common sense
suggests that such a situation is entirely possible. One can also turn this caveat
around, and note that there could just as easily be a situation in which the
equilibrium profile indicated ETG stability, but fluctuations of ηe could non-

linearly excite the ETG turbulence; in this case, one would find sub-marginal

ETG turbulence. Such a situation would most likely induce highly intermit-
tent or “bursty” behavior in the electron thermal flux, as ηe rose above or fell
below the critical level for instability. Application of ideas from investigations
of self-organized criticality [47,48] (i.e. the dynamics of bursty transport aris-
ing from a profile fluctuating around a critical gradient) could certainly prove
useful in this context. While both are interesting questions, treatment of these
issues would require a more sophisticated analysis which is beyond the scope
of this letter. We also note that the scale separation between the DITG and
ETG turbulence suggests that the modulations of ηe could induce significant
nonlocal behavior in the ETG dynamics, as the DITG modes would allow cou-
pling of the ETG dynamics across many ρe. Note that numerical investigation
of these issue would require running simulations of ETG turbulence for many
DITG space and timescales, as the induced burstiness and non-locality of the
ETG turbulence will be on DITG scales.

4 Necessary Conditions for Experimentally Relevant Streamer-

Driven Transport

As noted in the introduction, streamers and ETG turbulence have become
popular explanations for not only the residual electron heat transport in in-
ternal transport barriers where the particle and ion thermal transport are
suppressed (termed hereafter an ion ITB), but also sometimes for the bulk of
the plasma. However, for such an explanation to be satisfactory, three critical
issues must resolved. They are

(1) Do the parameters which correspond to ion ITBs favor the formation of
stable ETG streamers?

(2) If a stable streamer does form in an ion ITB, is the expected transport
comparable to that seen in experiment?

(3) If a stable streamer forms in a region where ITG or TEM turbulence
also exists, is the expected streamer-driven transport large enough to
dominate the ITG/TEM-driven transport?

To resolve the first issue, one might note that not only must streamers form
in ion ITBs for the theory to succeed, but that streamer formation should
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also be suppressed for parameters corresponding to suppression of anomalous
electron thermal transport, i.e. an electron ITB. From a theorist’s simplified
perspective, one might roughly characterize the conditions for formation of
an ion ITB as weak or “mildly” negative magnetic shear ŝ, and moderate
values of α = −Rq2dβ/dr, where q is the safety factor and ŝ = rd ln q/dr,
while electron ITBs form for stronger negative shear (ŝ ∼ −1) and larger
values of α (this crude characterization ignores many potentially important
factors, such as the heating mechanism and profile). Computational studies
by Jenko et. al., and more recently by Kendl [49], suggest that the linear
growth rate for ETG turbulence essentially favors streamer formation in a
“band” in ŝ− α space (see, e.g. Fig. 3 of Ref. [49]). As discussed in Sec. 2.4,
nonlinear simulations seem to support some of this picture (i.e. there seems to
be uniform agreement that low or negative shear leads to low transport levels,
but the nessecary conditions for high transport (as opposed to the observation
of streamers) remain an open question). A natural question to ask is whether
this band overlaps the region of ŝ−α space one might associate with ion ITBs.
If there is little or no overlap, then one must question whether streamers can
explain the anomalous electron transport in these situations.

It is also important to determine whether the streamer is stable in this region.
As shown in the previous section, the streamer stability depends crucially upon
the damping mechanisms of the sidebands and K-H mode. One should note
that while the previous discussion implicitly assumed that the perturbations
modes all had a coherent damping rate, there could be more complex nonlin-
ear saturation mechanisms of the perturbation as well. Considering previous
studies of nonlinear ITG dynamics, it is clear that one should also consider
whether the K-H mode could itself become nonlinearly unstable and breakup,
i.e. suffer a so-called “tertiary” instability [50]. One could easily imagine that
there is a critical amplitude for the K-H mode, after which it itself begins
to breakup, in which case one could view the whole process (streamer → K-
H mode → tertiary instability) as the first few steps in the development of
broadband turbulence. On the other hand, if the K-H mode saturates below
this critical value, then it may be reasonable to assume that the transport is
driven by the streamer mode under consideration. In addition to these “self-
saturation” issues, one must also consider whether the streamer will be stable
in the presence of any DITG turbulence, as described in Sec. 3. One must
therefore have not only a thorough understanding of the streamer stability
and saturation level, but also the stability of the K-H mode.

Understanding the streamer saturation level is also crucial to answering the
second and third questions, as the streamer transport is directly proportional
to its saturation level. In particular, for an analytic theory of streamer trans-
port to be considered successful, the transport must (in the language of a
popular children’s story) not be so small as indicated by mixing-length type
estimates, nor too big as the simplistic nonlinear analysis suggests, but “just
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right.” This requirement constitutes a specific test for theories of streamer-
driven transport to meet. Resolving the third issue may be particularly chal-
lenging, in that it is has previously been assumed the the inherent electron
thermal transport estimates one arrives at from considerations of ITG/TEM
turbulence have generally been considered sufficient for explaining the bulk
electron heat transport. Therefore, it is not obvious how one can self-consistently
invoke ETG turbulence as the source of the electron transport, while claiming
that the particle and ion thermal transport are due to ITG/TEM modes. The
findings of Sec. 3 which clearly demonstrates the impact ITG and (especially)
TEM modes will have on large-scale ETG structures makes the interpretation
of ETG turbulence as a dominant source of electron thermal transport all the
harder. If the final answer is that streamers (or other large-scale structures)
cannot conclusively be shown to result in larger transport, one is left with
explaining the inital observations of high anomalous electron thermal trans-
port in cases where the ion and particle transport have been suppressed. One
possibility may be short-wavelngth TEM modes, which would be more able to
survive in the presence of large-scale shear flows which would suppress longer
wavelength ITG turbulence.

5 Conclusions

A complete understanding of the underlying causes of anomalous electron
thermal transport in magnetic confinement devices remains an outstanding
challenge for the fusion community. The ETG mode has been proposed to be
a potential source of this transport, by driving a heat flux much greater than
simple mixing length estimates would suggest via various nonlinear mech-
anisms. Recently, one of the most prominent mechanisms has been that of
ETG-driven streamers, which have a much greater radial correlation length
than simple expectations would suggest, and which may also saturate at higher
levels than mixing length estimates would suggest. In this paper, we have re-
considered the stability of an array of “stacked” streamers to K-H breakup
in the context of the Hasegawa-Mima equation. It was shown that there is a
minimum intensity for streamer breakup, determined by the frequency mis-
match of the streamer and perturbation sidebands. It was also demonstrated
that when ad-hoc linear growth and damping rates are included, there is still a
minimum streamer intensity needed for breakup. The issue of streamer satura-
tion was also reconsidered, as previous calculations of streamer saturation [19]
were demonstrated to be internally inconsistent. Contrary to previous asser-
tions, it was demonstrated that the streamer saturation level is determined by
balancing the nonlinear growth rate of the KH mode against damping mechan-
ims (both linear and nonlinear) of the KH mode, and not against the linear
growth rate. This problem was demonstratrated to be conceptually analagous
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to the issue of coherent zonal flow generation by a “pump” drift-wave and two
sidebands, where it is well known that the saturation level of the pump is set
by the damping rate of the zonal flow. We note that differences in magnetic
geometry and parallel dynamics, which will strongly influence the KH damp-
ing rate, may explain some of the significant differences observed by various
nonlinear simulations of ETG turbulence.

The impact of DITG modes on ETG turbulence was also studied via simple
models. It was found that while the random shearing of “generic” ρe scale
ETG turbulence by DITG modes was weak, shearing of large-scale stream-
ers and collisionless skin-depth fluctuations by short-wavelength (q̄ρs ' 1)
DITG modes will be a significant effect. This result should also apply to other
large-scale structures such as ETG-driven zonal flows (calling into question
the results of Li and Kishimoto [40], who argued that ETG-driven zonal flows
could affect the DITG dynamics, but did not include the DITG shearing ef-
fect discussed here) or zonal magnetic fields [20,51]. Shearing of ETG-driven
zonal flows and fields (which may regulate the levels of ETG turbulence) by
DITG turbulence provides an additional saturation / limiting mechanism for
these zonal modes beyond the collisional damping effects discussed by Kim
et al. [38]. We emphasize the importance of DITG shearing of streamers be-
cause they represent a prominent potential mechanism for allowing ETG to
drive experimentally relevant levels of transport. Therefore, their suppression
directly impacts the status of ETG as a relevant source of significant trans-
port. It is also important to note that it is the short-wavelength portion of the
DITG spectrum which provides the relevant shearing field. This fact may have
important ramifications for understanding transport physics in the presence
of transport barriers, as these short-wavelength modes will be less affected by
the presence of the equilibrium shear flow than the larger scale DITG modes.
In addition, a primary source of such short-wavelength DITG modes (such as
the CTEM) will be trapped electrons, which suggests that the importance of
DITG shearing will vary with minor radius in the confinement device (e.g.
as the fraction of trapped electrons increases with normalized radius, DITG
shearing effects should become stronger). In addition, a novel mechanism for
cross-scale coupling has been detailed, in which the DITG induced fluctuations
of electron temperature gradient are manifested as a nonlinear modulation of
the ETG growth rate. This effect was found to scale as (δηe/ (η0

e − ηce))
2

,
which can be quite significant. What is particularly intriguing about this ef-
fect is that it can work to enhance the ETG intensity level, and oppose the
effect of random shearing by the DITG turbulence. Understanding the compe-
tition between these effects would be particularly interesting for streamers and
other large-scale ETG structures. Moreover, these results suggest that ETG
models must be implemented in the context of a specific DITG background.
Finally, we retiterate that while the effectiveness shearing of ETG turbulence
by DITG modes will depend upont the ion - electron mass ratio, the ηe modu-
lation effect does not, and therefore any numerical simulations of ETG-DITG
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interactions must take care when using artifical mass ratios so as not to bias
the importance of one effect over the other.

The analysis also points towards a number of future inquiries. First, a bet-
ter understanding of the dynamics of the “isolated burst” streamer is clearly
needed. Investigations of this will be quite challenging from either an an-
alytic or computational standpoint, as one must rigorously define what an
“isolated burst” streamer is, and identify the proper framework (most likely
probabilistic) for analyzing such structures. Second, the simple considerations
of streamer stability and saturation presented here should be considered us-
ing a framework with multiple fluctuation fields and geometrical effects in-
cluded. A particularly clear question for this problem is understanding how
including parallel dynamics might impact the results considered here. Also
crucial is developing a better understanding of the parameter space which
represents streamer generation, and how this space overlaps with experimen-
tal observations of anomalous electron transport. Finally, the considerations
of ETG-DITG interactions suggest a number of interesting avenues for future
study, such as the trapping of ETG wavepackets in ITG turbulence, and ways
to feasibly and self-consistently include the effects of DITG modes on ETG
turbulence in numerical simulation.
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Figure Captions

Fig. 1. Maximized growth rate of K-H perturbation as a function of φq/φc.
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Fig. 1. Maximized growth rate of K-H perturbation as a function of φq/φc.
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